\(\int \frac {x^2}{\sqrt [3]{1-x^2} (3+x^2)} \, dx\) [1015]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 515 \[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=-\frac {3 x}{1-\sqrt {3}-\sqrt [3]{1-x^2}}-\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3}}-\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3}}+\frac {\text {arctanh}(x)}{2\ 2^{2/3}}-\frac {3 \text {arctanh}\left (\frac {x}{1+\sqrt [3]{2} \sqrt [3]{1-x^2}}\right )}{2\ 2^{2/3}}-\frac {3 \sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {1+\sqrt [3]{1-x^2}+\left (1-x^2\right )^{2/3}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}} E\left (\arcsin \left (\frac {1+\sqrt {3}-\sqrt [3]{1-x^2}}{1-\sqrt {3}-\sqrt [3]{1-x^2}}\right )|-7+4 \sqrt {3}\right )}{2 x \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}}}+\frac {\sqrt {2} 3^{3/4} \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {1+\sqrt [3]{1-x^2}+\left (1-x^2\right )^{2/3}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-\sqrt [3]{1-x^2}}{1-\sqrt {3}-\sqrt [3]{1-x^2}}\right ),-7+4 \sqrt {3}\right )}{x \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}}} \]

[Out]

1/4*arctanh(x)*2^(1/3)-3/4*arctanh(x/(1+2^(1/3)*(-x^2+1)^(1/3)))*2^(1/3)-3*x/(1-(-x^2+1)^(1/3)-3^(1/2))-1/4*ar
ctan(3^(1/2)/x)*2^(1/3)*3^(1/2)-1/4*arctan((1-2^(1/3)*(-x^2+1)^(1/3))*3^(1/2)/x)*2^(1/3)*3^(1/2)+3^(3/4)*(1-(-
x^2+1)^(1/3))*EllipticF((1-(-x^2+1)^(1/3)+3^(1/2))/(1-(-x^2+1)^(1/3)-3^(1/2)),2*I-I*3^(1/2))*2^(1/2)*((1+(-x^2
+1)^(1/3)+(-x^2+1)^(2/3))/(1-(-x^2+1)^(1/3)-3^(1/2))^2)^(1/2)/x/((-1+(-x^2+1)^(1/3))/(1-(-x^2+1)^(1/3)-3^(1/2)
)^2)^(1/2)-3/2*3^(1/4)*(1-(-x^2+1)^(1/3))*EllipticE((1-(-x^2+1)^(1/3)+3^(1/2))/(1-(-x^2+1)^(1/3)-3^(1/2)),2*I-
I*3^(1/2))*((1+(-x^2+1)^(1/3)+(-x^2+1)^(2/3))/(1-(-x^2+1)^(1/3)-3^(1/2))^2)^(1/2)*(1/2*6^(1/2)+1/2*2^(1/2))/x/
((-1+(-x^2+1)^(1/3))/(1-(-x^2+1)^(1/3)-3^(1/2))^2)^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 515, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {494, 241, 310, 225, 1893, 402} \[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\frac {\sqrt {2} 3^{3/4} \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {\left (1-x^2\right )^{2/3}+\sqrt [3]{1-x^2}+1}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}} x}-\frac {3 \sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {\left (1-x^2\right )^{2/3}+\sqrt [3]{1-x^2}+1}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{2 \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}} x}-\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3}}-\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3}}-\frac {3 \text {arctanh}\left (\frac {x}{\sqrt [3]{2} \sqrt [3]{1-x^2}+1}\right )}{2\ 2^{2/3}}+\frac {\text {arctanh}(x)}{2\ 2^{2/3}}-\frac {3 x}{-\sqrt [3]{1-x^2}-\sqrt {3}+1} \]

[In]

Int[x^2/((1 - x^2)^(1/3)*(3 + x^2)),x]

[Out]

(-3*x)/(1 - Sqrt[3] - (1 - x^2)^(1/3)) - (Sqrt[3]*ArcTan[Sqrt[3]/x])/(2*2^(2/3)) - (Sqrt[3]*ArcTan[(Sqrt[3]*(1
 - 2^(1/3)*(1 - x^2)^(1/3)))/x])/(2*2^(2/3)) + ArcTanh[x]/(2*2^(2/3)) - (3*ArcTanh[x/(1 + 2^(1/3)*(1 - x^2)^(1
/3))])/(2*2^(2/3)) - (3*3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 - (1 - x^2)^(1/3))*Sqrt[(1 + (1 - x^2)^(1/3) + (1 - x^2)^
(2/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))^2]*EllipticE[ArcSin[(1 + Sqrt[3] - (1 - x^2)^(1/3))/(1 - Sqrt[3] - (1 -
 x^2)^(1/3))], -7 + 4*Sqrt[3]])/(2*x*Sqrt[-((1 - (1 - x^2)^(1/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))^2)]) + (Sqrt
[2]*3^(3/4)*(1 - (1 - x^2)^(1/3))*Sqrt[(1 + (1 - x^2)^(1/3) + (1 - x^2)^(2/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))
^2]*EllipticF[ArcSin[(1 + Sqrt[3] - (1 - x^2)^(1/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))], -7 + 4*Sqrt[3]])/(x*Sqr
t[-((1 - (1 - x^2)^(1/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))^2)])

Rule 225

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[(-s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[3])*s + r
*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 241

Int[((a_) + (b_.)*(x_)^2)^(-1/3), x_Symbol] :> Dist[3*(Sqrt[b*x^2]/(2*b*x)), Subst[Int[x/Sqrt[-a + x^3], x], x
, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b}, x]

Rule 310

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(-(
1 + Sqrt[3]))*(s/r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x]
, x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 402

Int[1/(((a_) + (b_.)*(x_)^2)^(1/3)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> With[{q = Rt[-b/a, 2]}, Simp[q*(ArcTan
[Sqrt[3]/(q*x)]/(2*2^(2/3)*Sqrt[3]*a^(1/3)*d)), x] + (Simp[q*(ArcTanh[(a^(1/3)*q*x)/(a^(1/3) + 2^(1/3)*(a + b*
x^2)^(1/3))]/(2*2^(2/3)*a^(1/3)*d)), x] - Simp[q*(ArcTanh[q*x]/(6*2^(2/3)*a^(1/3)*d)), x] + Simp[q*(ArcTan[Sqr
t[3]*((a^(1/3) - 2^(1/3)*(a + b*x^2)^(1/3))/(a^(1/3)*q*x))]/(2*2^(2/3)*Sqrt[3]*a^(1/3)*d)), x])] /; FreeQ[{a,
b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[b*c + 3*a*d, 0] && NegQ[b/a]

Rule 494

Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_)^(n_))^(q_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Dist[e^n/b, Int[
(e*x)^(m - n)*(c + d*x^n)^q, x], x] - Dist[a*(e^n/b), Int[(e*x)^(m - n)*((c + d*x^n)^q/(a + b*x^n)), x], x] /;
 FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1] && IntBinomialQ[a, b
, c, d, e, m, n, -1, q, x]

Rule 1893

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 + Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 + Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x
] + Simp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/(
(1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && EqQ[b*c^3 - 2*(5 + 3*Sqr
t[3])*a*d^3, 0]

Rubi steps \begin{align*} \text {integral}& = -\left (3 \int \frac {1}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx\right )+\int \frac {1}{\sqrt [3]{1-x^2}} \, dx \\ & = -\frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3}}-\frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3}}+\frac {\tanh ^{-1}(x)}{2\ 2^{2/3}}-\frac {3 \tanh ^{-1}\left (\frac {x}{1+\sqrt [3]{2} \sqrt [3]{1-x^2}}\right )}{2\ 2^{2/3}}-\frac {\left (3 \sqrt {-x^2}\right ) \text {Subst}\left (\int \frac {x}{\sqrt {-1+x^3}} \, dx,x,\sqrt [3]{1-x^2}\right )}{2 x} \\ & = -\frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3}}-\frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3}}+\frac {\tanh ^{-1}(x)}{2\ 2^{2/3}}-\frac {3 \tanh ^{-1}\left (\frac {x}{1+\sqrt [3]{2} \sqrt [3]{1-x^2}}\right )}{2\ 2^{2/3}}+\frac {\left (3 \sqrt {-x^2}\right ) \text {Subst}\left (\int \frac {1+\sqrt {3}-x}{\sqrt {-1+x^3}} \, dx,x,\sqrt [3]{1-x^2}\right )}{2 x}-\frac {\left (3 \left (1+\sqrt {3}\right ) \sqrt {-x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-1+x^3}} \, dx,x,\sqrt [3]{1-x^2}\right )}{2 x} \\ & = -\frac {3 x}{1-\sqrt {3}-\sqrt [3]{1-x^2}}-\frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3}}-\frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3}}+\frac {\tanh ^{-1}(x)}{2\ 2^{2/3}}-\frac {3 \tanh ^{-1}\left (\frac {x}{1+\sqrt [3]{2} \sqrt [3]{1-x^2}}\right )}{2\ 2^{2/3}}-\frac {3 \sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {1+\sqrt [3]{1-x^2}+\left (1-x^2\right )^{2/3}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}} E\left (\sin ^{-1}\left (\frac {1+\sqrt {3}-\sqrt [3]{1-x^2}}{1-\sqrt {3}-\sqrt [3]{1-x^2}}\right )|-7+4 \sqrt {3}\right )}{2 x \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}}}+\frac {\sqrt {2} 3^{3/4} \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {1+\sqrt [3]{1-x^2}+\left (1-x^2\right )^{2/3}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}} F\left (\sin ^{-1}\left (\frac {1+\sqrt {3}-\sqrt [3]{1-x^2}}{1-\sqrt {3}-\sqrt [3]{1-x^2}}\right )|-7+4 \sqrt {3}\right )}{x \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 3.98 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.05 \[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\frac {1}{9} x^3 \operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{3},1,\frac {5}{2},x^2,-\frac {x^2}{3}\right ) \]

[In]

Integrate[x^2/((1 - x^2)^(1/3)*(3 + x^2)),x]

[Out]

(x^3*AppellF1[3/2, 1/3, 1, 5/2, x^2, -1/3*x^2])/9

Maple [F]

\[\int \frac {x^{2}}{\left (-x^{2}+1\right )^{\frac {1}{3}} \left (x^{2}+3\right )}d x\]

[In]

int(x^2/(-x^2+1)^(1/3)/(x^2+3),x)

[Out]

int(x^2/(-x^2+1)^(1/3)/(x^2+3),x)

Fricas [F]

\[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\int { \frac {x^{2}}{{\left (x^{2} + 3\right )} {\left (-x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

[In]

integrate(x^2/(-x^2+1)^(1/3)/(x^2+3),x, algorithm="fricas")

[Out]

integral(-(-x^2 + 1)^(2/3)*x^2/(x^4 + 2*x^2 - 3), x)

Sympy [F]

\[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\int \frac {x^{2}}{\sqrt [3]{- \left (x - 1\right ) \left (x + 1\right )} \left (x^{2} + 3\right )}\, dx \]

[In]

integrate(x**2/(-x**2+1)**(1/3)/(x**2+3),x)

[Out]

Integral(x**2/((-(x - 1)*(x + 1))**(1/3)*(x**2 + 3)), x)

Maxima [F]

\[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\int { \frac {x^{2}}{{\left (x^{2} + 3\right )} {\left (-x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

[In]

integrate(x^2/(-x^2+1)^(1/3)/(x^2+3),x, algorithm="maxima")

[Out]

integrate(x^2/((x^2 + 3)*(-x^2 + 1)^(1/3)), x)

Giac [F]

\[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\int { \frac {x^{2}}{{\left (x^{2} + 3\right )} {\left (-x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

[In]

integrate(x^2/(-x^2+1)^(1/3)/(x^2+3),x, algorithm="giac")

[Out]

integrate(x^2/((x^2 + 3)*(-x^2 + 1)^(1/3)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\int \frac {x^2}{{\left (1-x^2\right )}^{1/3}\,\left (x^2+3\right )} \,d x \]

[In]

int(x^2/((1 - x^2)^(1/3)*(x^2 + 3)),x)

[Out]

int(x^2/((1 - x^2)^(1/3)*(x^2 + 3)), x)